Effects of Methylene Tetrahydro Folate Reductase Gene Polymorphisms on Methotrexate Toxicity in Egyptian Pediatric Acute Lymphocytic Leukaemia Patients

Gomaa Mostafa-Hedeab\textsuperscript{a, b, *}, Yasser Elborai\textsuperscript{c} and Gamal Thabet Ali Ebid\textsuperscript{d}

\textsuperscript{a}Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt.
\textsuperscript{b}Department of Pharmacology, Faculty of Medicine, Jouf University, Saudia Arabia.
\textsuperscript{c}Department of Pediatric Oncology, National Cancer Institute, Cairo University, Egypt.
\textsuperscript{d}Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt.

Email: Gomaa_hedeab@yahoo.com

Running title: MTHFR Polymorphisms on Methotrexate toxicity
Abstract

This study was designed to evaluate the effect of MTHFR gene polymorphisms on MTX toxicity in pediatric Egyptian ALL patients. Ninety-Four of Pediatric ALL patients aged 3–13 years (7.6 ± 3.6) on oral maintenance dose of 50 mg/m^2 weekly of MTX. c.677 C>T (rs1801133) and c. 1298 A>C (rs1801131) genotyping were performed using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). c.677C>T CC, CT, and TT allele frequencies were 42.6%, 46.8%, and 10.6%, while c.1298C>A AA, AC, and CC alleles frequencies were 62.7%, 24.5%, and 12.8%. None of the investigated polymorphism (C677T or A1298C alleles) was associated with either overall or site specific MTX toxicity regarding anaemia (p = 0.99) (p = 0.4), platelets (p = 0.4) (p = 0.4), hepatotoxicity (p = 0.4) (p = 0.7), respectively. c.677 C>T genotype; CC/CT was associated with hematopoietic toxicity (60.7%) and TT (60%) (p = 0.2). CC/CT was associated with platelet toxicity (76.2%) and TT (80%) (p = 1). Hepatotoxicity was present in CC/CT (40.5%) and in TT (60%) (p = 0.3). c.1298 A>C genotype; Hematopoietic toxicity was present in CC/AC (68.6%) and in AA (55.9%) (p = 0.2). Platelet toxicity was present in CC/AC (82.9%) and in AA (72.9%) (p = 0.3). Hepatotoxicity was present in CC/AC (37.1%) and in AA (45.8%) (p = 0.5). No significant associations were detected
between *MTHFR c.677C>T* or *c. 1298A>C* polymorphisms and either overall or site specific MTX toxicity.

**Keywords:** Methotrexate; Egyptian; *MTHFR*; Polymorphisms.


Introduction

Acute Lymphocytic Leukaemia (ALL) is the most common malignancy in childhood; it represents 30% of all pediatric malignancies. In the last 20 years, the event-free survival was around 80% in the developed countries (1). Methotrexate is an important component of ALL treating protocols in childhood. Although MTX has an important successful role, toxicity may cause reduction or cessation of its dose. Therefore, predicting the adverse effect of MTX is crucial in treating ALL pediatric patients (2).

Methotrexate is a pro-drug which requires intracellular polyglutamation for maximum cytotoxic effects (3), MTHFR catalyzes the irreversible conversion of dihydrofolate (DHF) to tetrahydrofolate (THF), an active form of folate needed for the de novo synthesis of the nucleoside thymidine is required for DNA synthesis and also essential for purine and pyrimidine base biosynthesis. Methotrexate, therefore, inhibits the synthesis DNA, RNA, thymidilates, and proteins (4).

MTX also affects other important enzymes, such as methylenetetrahydrofolate reductase (MTHFR); MTHFR is a key enzyme for intracellular folate homeostasis and metabolism (5). MTHFR converts the irreversible conversion of 5,10- methyltetrahydrofolate (5,10-CH2-THF), to 5-
methyltetrahydrofolate (5-CH-THF), which is the predominant circulating form of folate and serves as the carbon donor for the remethylation of homocysteine to methionine (6, 7). Alterations in reduced folate pools, as a consequence of changes in MTHFR activity, may have a significant effect on the responsiveness of malignant and non-malignant cells to MTX. Accordingly, it has been proposed that an impaired conversion of 5,10-CH2-THF to 5-CH-THF and the subsequent modification in the intracellular folates pool could increase the toxic effect of MTX (8).

The MTHFR gene is localized on chromosome 1p36.3, C677T, and A1298C polymorphisms are two important single nucleotide polymorphisms (SNPs) of MTHFR (9). $c677C>T$ allele encodes proteins with decreased enzymatic activity, in comparison with the normal allele 677C. People with the 677CT (heterozygous) and 677TT (homozygous) genotype exhibit 60% and 30%, respectively, of the activity of the normal homozygous 677CC genotype (10, 11). In the MTHFR A1298C polymorphism, the 1298C allele is responsible for a milder decrease in MTHFR activity with respect to the normal allele 1298A. The 1298CC homozygous individuals have 60% of the normal activity of 1298AA homozygous individuals (12). The effect of MTHFR gene polymorphisms on MTX induced toxicity is still receiving clinical studies and explanations (13-15), with conflicting results regarding polymorphism regulating intracellular MTX metabolic pathway and toxicity of MTX in pediatric ALL (16).
Since *MTHFR* polymorphisms may affect sensitivity to MTX and their frequency may differ by ethnicity; we evaluated these polymorphisms in a group of Egyptian pediatric ALL patients on methotrexate-based maintenance treatment to determine the respective genotype frequencies and their impact on MTX toxicity.

**Experimental**

**Study Population**

The present study included 94 ALL patients aged 3–13 years (mean 7.6 ± 3.6 years); 58 boys (61.7%) and 36 girls (38.3%). They presented to the pediatric oncology department, National Cancer Institute (NCI), Cairo University, Egypt. Diagnosis of ALL was performed according to clinical, morphological, cytochemical, and immunophenotyping examination. The patients who were included in the study received oral MTX as a maintenance therapy at a dosage 50 mg/m² weekly. The patients were followed up for at least six weeks. Institute review board (IRB) approval was obtained and data were stored in a password-protected database. Their immunophenotypes were pre-B-lineage in 83 (88.3%) and T-lineage in 11 (11.7%). Fifty-seven patients (60.6%) were classified as low
risk, whereas 37 (39.4%) were classified as standard risk according to the protocol risk stratification criteria.

Methods

The patients were followed up for 6 weeks after initiation of maintenance dose of MTX 50 mg/m$^2$ weekly for bone marrow suppression and hepatic toxicity. At the end of 6$^{th}$ week, White blood cells (WBC’s) count with differential was collected to assess bone marrow suppression. To assess hepatic toxicity the following was collected: alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), and lactate dehydrogenase (LDH). common terminology criteria for adverse events (CTCAE v. 4.03) was used to define the grades of marrow and hepatic toxicity. Anemia was defined as hemoglobin (Hgb) < 10.0 g/dL. Toxicity of MTX on platelets was considered if platelet count was <50,000 10$^3$/mm$^3$. Hepatotoxic effect of MTX was defined as maximum ALT > 60 (2x ULN), maximum AST > 80 (2x ULN), and maximum TB > 2 mg/dL.
**MTHFR Genotyping**

Five milliliter blood sample was withdrawn in an EDTA-coated tube from each patient, stored at -25 °C for genotyping. DNA was isolated from peripheral blood at diagnosis (17, 16). The *MTHFR C677T* and *A1298C* polymorphisms were identified using the method described by (18). After initial denaturation for 10 min at 95 °C, the PCR was performed for 35 cycles of 45 sec at 95 °C, 45 sec at 59 °C, and 1 min at 72 °C. The last elongation step was extended to 7 min (18).

The amplified fragments targeted the sites of polymorphisms: the 198-bp fragment for *MTHFR C677T* containing the C→T bp substitution at nucleotide 677 that creates a HinfI restriction site and the 163-bp fragment for *MTHFR A1298C* is containing the A→C substitution at nucleotide 1298 that abolishes an MboII restriction site. Therefore, HinfI and MboII (New England BioLabs, Beverly, MA) were used to detect the *C677T* and *A1298C* polymorphisms, respectively. The digestion products were visualized with ethidium bromide after electrophoresis on 3% a garose gel at 100 volts for 30 min for the *C677T* polymorphism and on 4% a garose gel for the *A1298C* polymorphism.

The *MTHFR 677CC* wild type homozygous was identified by the presence of only a 198 bp fragment. *677CT* heterozygous was identified by 198, 175, and 23 bp fragments, and *677TT* homozygous was identified by 175 and 23 bp
fragments. $1298AA$ wild type homozygous produces five fragments of 56, 31, 30, 28, and 18 bp. The $1298AC$ heterozygous produces six fragments of 84, 56, 31, 30, 28, and 18 bp, and the $1298CC$ homozygous variant produces four fragments of 84, 31, 30, and 18 bp.

Statistical analysis

Data were collected, tabled. Correlation of $MTHFR$ alleles with clinical characteristics (WBC, cytogenetic risk, therapy-related toxicity) was also performed using the $\chi^2$ or Fisher’s exact test. All statistical calculations were done using computer programs Microsoft Excel 2010 (Microsoft Corporation, NY, USA) and SPSS (Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA) version 17 for Microsoft Windows. The level of significance was considered if $p < 0.05$.

Results

The distribution of $C677T$ and $A1298C$ $MTHFR$ gene frequencies among the study population is shown in Table 1.
Table 1. Genotype Frequencies of the studied patients.

<table>
<thead>
<tr>
<th>allele</th>
<th>677 genotype</th>
<th>1298 genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>CT</td>
</tr>
<tr>
<td>Frequency</td>
<td>40 (42.6%)</td>
<td>44 (46.8%)</td>
</tr>
</tbody>
</table>

*MTHFR C677T polymorphism and toxicity in pediatric ALL*

There was no significant difference of MTX toxicity between patients had anemia and those who had normal hemoglobin level with different alleles ($p = 0.99$). Within the patients of different alleles, there was no significant difference between the patients who had low platelets and those who had normal platelets ($p = 0.4$). There was no any significant difference between patients with different alleles in relation to hepatoxicity ($p = 0.4$) (Table 2).
At *MTHFR C677T* genotype, from the 94 patients, 84 patients *CC* (wild-type) plus *CT* (heterozygous) and 10 patients *TT* homozygous, Hematopoietic toxicity in *CC/CT* and *TT* was 51/84 (60.7%) and 6/10 (60%), respectively (*p* = 0.2). Platelet toxicity in *CC/CT* and *TT* was 64/84 (76.2%) and 8/10 (80%),

<table>
<thead>
<tr>
<th></th>
<th>677 genotype</th>
<th></th>
<th></th>
<th>1298 genotype</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>CC</em></td>
<td><em>CT</em></td>
<td><em>TT</em></td>
<td><em>P</em></td>
<td><em>AA</em></td>
<td><em>AC</em></td>
<td><em>CC</em></td>
<td><em>P</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemoglobin (Normal)</td>
<td>16 (43.2%)</td>
<td>17 (45.9%)</td>
<td>4 (10.8%)</td>
<td>0.99</td>
<td>26 (70.3%)</td>
<td>8 (21.6%)</td>
<td>3 (8.1%)</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemoglobin (Anaemia)</td>
<td>24 (42.1%)</td>
<td>27 (47.4%)</td>
<td>6 (10.5%)</td>
<td></td>
<td>33 (57.9%)</td>
<td>15 (26.3%)</td>
<td>9 (15.8%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Platelets</td>
<td>7 (31.8%)</td>
<td>13 (59.1%)</td>
<td>2 (9.1%)</td>
<td>0.4</td>
<td>16 (72.8%)</td>
<td>3 (13.6%)</td>
<td>3 (13.6%)</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>33 (45.8%)</td>
<td>31 (43.1%)</td>
<td>8 (11.1%)</td>
<td></td>
<td>43 (59.7%)</td>
<td>20 (27.8%)</td>
<td>9 (12.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Hepatic toxicity</td>
<td>26 (48.1%)</td>
<td>22 (40.7%)</td>
<td>6 (11.1%)</td>
<td>0.4</td>
<td>32 (59.2%)</td>
<td>15 (27.8%)</td>
<td>7 (13%)</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic toxicity</td>
<td>14 (35%)</td>
<td>22 (55%)</td>
<td>4 (10%)</td>
<td></td>
<td>27 (67.5%)</td>
<td>8 (20%)</td>
<td>5 (12.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Clinical Risk factor and events.
respectively \( (p = 1) \). Hepatotoxicity in \( CC/CT \) and \( TT \) was 34/84 (40.5\%) and 6 (60\%), respectively \( (p = 0.3) \) (Table 3).

**Table 3.** MTX toxicity among wild plus heterozygous versus homozygous all patients.

<table>
<thead>
<tr>
<th></th>
<th>Hematopoietic toxicity</th>
<th>( P )-value</th>
<th>Platelets toxicity</th>
<th>( P )-value</th>
<th>Hepatotoxicity</th>
<th>( P )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MTHFR 677 genotype</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( CC ) (wild-type) plus ( CT ) (heterozygous) ( (n = 84) )</td>
<td>51 (60.7%)</td>
<td>0.2</td>
<td>64 (76.2%)</td>
<td>1</td>
<td>34 (40.5%)</td>
<td>0.3</td>
</tr>
<tr>
<td>( TT ) (homozygous) ( (n = 10) )</td>
<td>6 (60%)</td>
<td></td>
<td>8 (80%)</td>
<td></td>
<td>6 (60%)</td>
<td></td>
</tr>
<tr>
<td><strong>MTHFR 1298 genotype</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( CC ) (homozygous) plus ( AC ) (heterozygous) ( (n = 35) )</td>
<td>24 (68.6%)</td>
<td>0.2</td>
<td>29 (82.9%)</td>
<td>0.3</td>
<td>13 (37.1%)</td>
<td>0.5</td>
</tr>
<tr>
<td>( AA ) (wild-type) ( (n = 59) )</td>
<td>33 (55.9%)</td>
<td></td>
<td>43 (72.9%)</td>
<td></td>
<td>27 (45.8%)</td>
<td></td>
</tr>
</tbody>
</table>
**MTHFR A1298C polymorphism and toxicity in pediatric ALL**

Regarding *MTHFR A1298C* polymorphism, there was no significant difference between the patients, of different alleles who wa suffering from anemia as MTX toxicity \((p = 0.4)\). MTX did not show significat toxic effect on platelets within the patients of different alleles \((p = 0.4)\). Hepatotoxic effect of MTX didn’t show any significant difference between the patients with different alleles \((p = 0.7)\) (Table 2).

The *MTHFR A1298C genotype* was done among the 94 patients where 59 patients were AA (wild-type) and 35 patients were CC (homozygous) plus AC (heterozygous). Hematopoietic toxicity in CC/AC and AA was 24/35 (68.6%) and 33/59 (55.9%), respectively \((p = 0.2)\). Platelet toxicity in CC/AC and AA was 29/35 (82.9%) and 43/59 (72.9%), respectively \((p = 0.3)\). Hepatotoxicity in CC/AC and AA was 13/35 (37.1%) and 27/59 (45.8%), respectively \((p = 0.5)\) (Table 3).

**Discussion**

Allele frequencies of the present study is slightly different from study done by Zidan *et al.* on Egyptian population who showed the c.677C>T CC, CT and TT alleles frequencies were 26.3%, 37.5% and 36.2% respictively, and c.1298A>C AA, AC, and CC alleles frequenies were 16.25%, 40%, and 43.75% , respictively (19). These differences may be due to low number of the patients
included in both studies and also obvious heterogeneity of the Egyptian population, and large scale genetic study may clarify the exact gene distribution.

There are no reliable tests or assessments that can predict MTX toxicity, a better understanding of its pharmacology can be done by using the pharmacogenetics tools to study the effect of genetic differences in the action of enzymes involved in MTX metabolic pathways that may play a role in determining its relapse and toxicity (20).

In the present study, no significant associations were detected between \textit{MTHFR} \textit{c.677C>T} or \textit{c.1298A>C} polymorphisms and either overall or site specific MTX toxicity, and either haematological or non-haematological like hepatotoxicity. This is in accordance with studies done by Lopez-Lopez \textit{et al.} and Ruiz-Arguelles \textit{et al.} (5, 21).

On the other hand, some studies showed an increased risk of developing adverse events with low dose MTX based therapy among rheumatoid arthritis patients (22, 23).

In Acute Leukemia patients, few studies demonstrated an association of \textit{MTHFR C677T} and \textit{A1298C} with mild toxicities in the form of myelosuppression (24), hepatic toxicity and mucositis (25), as well as hepatotoxicity (26) whereas
some studies showed its association with decrease in toxicity rates (27, 28). Whereas de Jong showed \textit{MTHFR} 1298AC variant may induce MTX resistance in ex-vivo of lymphoblasts obtained from ALL paediatric patients (29).

In the present study, there is no association between \textit{c.1298C>T} gene polymorphisms and risk of developeing MTX related toxicity. Te Loo and his colleagues agreed with our results, where they concluded that it is still unclear whether the \textit{c677C>T} and \textit{c1298 >C} genetic variants play a clinically significant role in the development of MTX-induced liver toxicity (30). Also, there was a study on rheumatoid arthritis patients (31, 32).

\textit{c1298 >C} polymorphisms may decrease MTX sensitivity in lymphoblast from pediatric ALL patients (29).

This controversy in the published results may be explained by differences in study design, sample size, the different clinical setting and schedule of treatment, pathological, clinical and demographic pattern of the patients, the inability to control another factors \textit{e.g.} folate intake or parameters to measure efficacy and toxicity (28, 31 and 33).
Race also may play a role in these conflicting results; Martin et al. have reported an interaction between $C677T$ and $A1298C$ genetic variants and race/ethnicity on breast cancer survival (34).

Another pilot retrospective cross-validation approach study on Caucasians and African-Americans with rheumatoid arthritis, resulted in the $MTHFR$ genetic variant has differential effects in these racial groups suggesting the race may significantly interact with the $C677T$ variant to influence the risk of MTX toxicity (35). A similar race-specific association with MTX-related adverse events in Caucasian and African–American rheumatoid arthritis patients has also been suggested for the $A1298C$ variants (36).

**Conclusion**

From the present results we can conclude that neither $c677C>T$ nor $c128A>C$ polymorphisms had a role in haematopoietic or hepatic toxicity. Another wide scale studies may be needed confirming these findings among the Egyptian population.
References


(5) Lopez-Lopez E, Martin-Guerrero I, Ballesteros J and Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in
methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. 


(16) Lee YH and Song GG. Associations between the C677T and A1298C polymorphisms of *MTHFR* and the efficacy and toxicity of methotrexate


(22) Świerkot J, Ślężak R, Karpiński P, Pawłowska J, Noga L, Szechiński J and Wiland P. Associations between single-nucleotide polymorphisms of


